BMS-986036 (PEGylated FGF21) in Patients with Non-Alcoholic Steatohepatitis: A Phase 2 Study

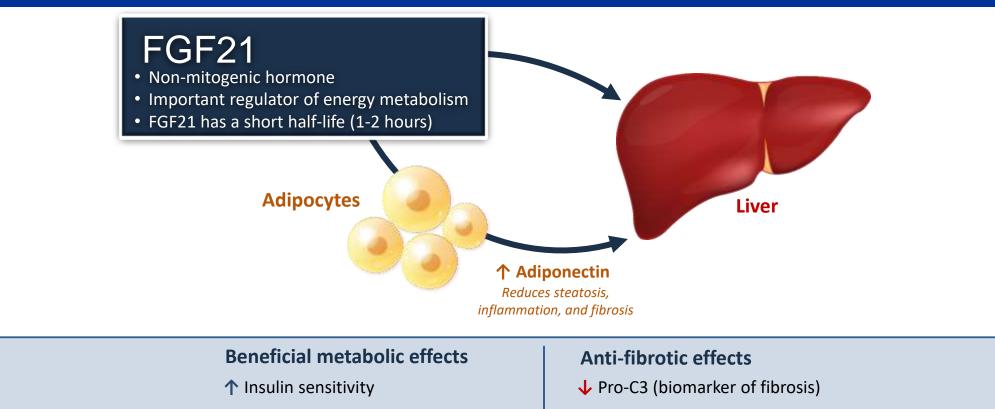
Arun Sanyal,¹ Edgar D. Charles,² Brent Neuschwander-Tetri,³ Rohit Loomba,⁴ Stephen Harrison,⁵ Manal F. Abdelmalek,⁶

Eric Lawitz,⁷ Dina Halegoua-DeMarzio,⁸ Yuping Dong,² Stephanie Noviello,² Yi Luo,² Rose Christian²

¹Virginia Commonwealth University, Richmond, Virginia, USA; ²Bristol-Myers Squibb, Lawrenceville, New Jersey, USA; ³Saint Louis University, Saint Louis, Missouri, USA; ⁴University of California – San Diego, San Diego, California, USA; ⁵Pinnacle Clinical Research, San Antonio, Texas, USA; ⁶Duke University, Durham, North Carolina, USA; ⁷Texas Liver Institute, University of Texas Health, San Antonio, Texas, USA; ⁸Thomas Jefferson University, Philadelphia, Pennsylvania, USA

The Liver Meeting, American Association for the Study of Liver Diseases (AASLD 2017) Washington, DC, October 20-24, 2017 **Publication number: 182**

Presenting author: Arun Sanyal


Disclosures

- Arun Sanyal received research support from Bristol-Myers Squibb which was provided to his institution
- He has stock ownership in Sanyal Bio, Genfit, Hemoshear, Tiziana, Natural Shield, Indalo and Durect
- He has received consulting fees, from Pfizer, Nimbus, Nitto Denko, HemoShear Therapeutics, Lilly, UptoDate, Elsevier, Quintiles, and Salix
- Dr. Sanyal received research grants from Conatus, Gilead, Novartis, Galectin, Bristol-Myers Squibb, Merck, Astra Zeneca, Boehringer Knoll, Tobira, Intercept, Novo Nordisk, Malinkrodt, Octeta, Salix, and Cumberland; Dr. Sanyal received financial support from Akarna, GenFit, Syntlogic, Ardelyx, and Covance

Non-Alcoholic Steatohepatitis (NASH)

- NASH, the most advanced form of non-alcoholic fatty liver disease (NAFLD), is characterized by steatosis, with inflammation and liver cell injury¹
- The overall prevalence of NASH in the general population is 1.5% to 6.5%²
- Individuals with NASH have an increased mortality rate due to cardiovascular events, cirrhosis, hepatocellular carcinoma, and liver transplant-related complications¹
- There is currently no approved drug therapy for NASH
- New and effective treatments for NASH are needed

Fibroblast Growth Factor 21 (FGF21)

FGF21 may have direct and indirect beneficial effects on non-alcoholic steatohepatitis (NASH) and NASH-related fibrosis

1. Owen BM, et al. Trends Endocrinol Metab. 2015; 26(1):22-29; 2. Gimeno RE, Moller DE. Trends Endocrinol Metab. 2014; 25(6):303-11;

3. Polyzos SA. Et al. Diabetes Obes Metab. 2010;12(5): 365-83; 4. Kharitonenkov A and Larsen P, Trends Endocrinol Metab. 2011;22(3):81-86;

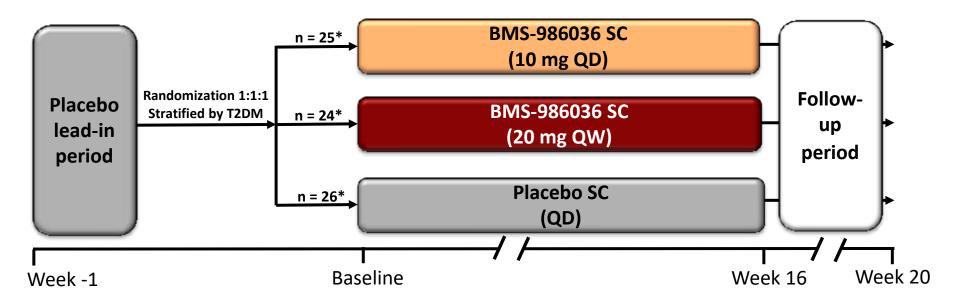
Lipogenesis & improvement in lipids

5. Charles E. et al. *Hepatology* 2016;**64**(Suppl):17A.

BMS-986036 (PEGylated FGF21)

BMS-986036 is a PEGylated, recombinant human FGF21 analog with a prolonged half-life, supporting weekly dosing

- Improves NAFLD activity score (NAS) and fibrosis in animal models¹
- Increases adiponectin, a key adipokine with insulin-sensitizing, anti-inflammatory, and anti-fibrotic properties^{1,2}
- Decreases Pro-C3, an emerging biomarker of fibrosis³⁻⁶
- Improved insulin sensitivity and lipids in a phase 2 study in obese patients with type-2 diabetes⁶


^{1.} Krupinski J, et al. Hepatol 2016;64(Suppl):749A; 2. Polyzos SA, et al. Diabetes Obes Metab. 2010;12(5): 365-83;

^{3.} Nielsen MJ, et al, PLOS One 2015;10(9):e0137302; 4. Nielsen MJ, et al. Liver Int 2015;35:429-437;

^{5.} Karsdal MA, et al. Am J Physiol Gastrointest Liver Physiol 2016;311(6):G1009-1017;

^{6.} Charles E, et al. *Hepatol* 2016;**64**(Suppl):17A.

Study Design Phase 2 Double-Blind, Placebo-Controlled Study

- Key Eligibility Criteria: biopsy-proven NASH with fibrosis stage 1-3 (within 1 year of screening), BMI ≥25 kg/m², hepatic fat fraction ≥ 10% (MRI-PDFF)
- Primary Efficacy Endpoint: change in hepatic fat fraction (%) from baseline to Week 16
- Key Exploratory Endpoints: adiponectin, lipids, ALT, AST, MRE, and serum Pro-C3
- Safety Assessments: AEs, laboratory parameters, and vital signs

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; MRE, magnetic resonance elastography; MRI-PDFF, magnetic resonance imaging-proton density fat fraction; NASH, non-alcoholic steatohepatitis; QD, once daily; QW, once weekly; SC, subcutaneous; T2DM; type-2 diabetes mellitus.

*Planned sample size was 30 per group; enrollment ended early due to the significant effect of BMS-986036 on the primary endpoint seen during preplanned interim analysis at treatment Week 8.

Baseline Demographics and Disease Characteristics

	BMS-98		
Characteristics	10 mg QD (n=25)	20 mg QW (n=24)	Placebo (n=26)
Demographics			. ,
Age, years, mean (SD)	52 (10)	51 (12)	47 (12)
Men, n (%)	10 (40)	7 (29)	10 (38)
Race, White, n (%)	24 (96)	23 (96)	25 (96)
BMI, kg/m ² , mean (SD)	34 (4)	35 (6)	37 (7)
Disease Characteristics			
T2DM, n (%)	9 (36)	8 (33)	11 (42)
NASH CRN Fibrosis, n (%)			
Stage 1	10 (40)	13 (54)	17 (65)
Stage 2	6 (24)	6 (25)	8 (31)
Stage 3	9 (36)	5 (21)	1 (4)
NAFLD activity score, mean (SD) ^a	4.4 (1)	4.4 (1)	4.0 (1)

Baseline demographics and disease characteristics were generally comparable between treatment groups

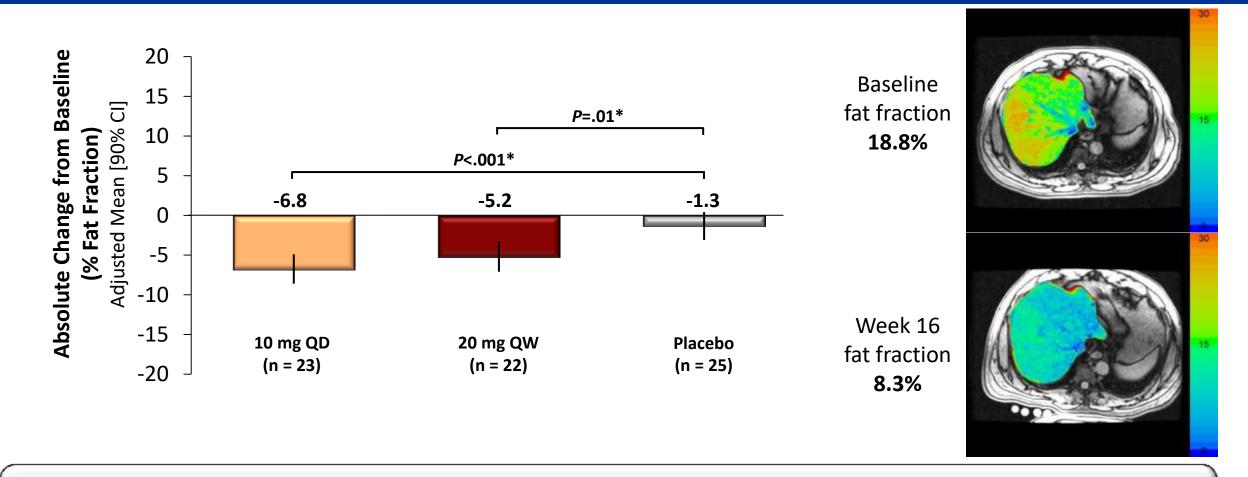
BMI, body mass index; NASH CRN, non-alcoholic steatohepatitis clinical research network;

7

^aOne patient in the 20 mg QW group was missing data for NAFLD activity score.

NAFLD, non-alcoholic fatty liver disease; T2DM, type-2 diabetes mellitus; QD, once daily; QW, once weekly; SD, standard deviation.

Baseline Liver and Metabolic Parameters

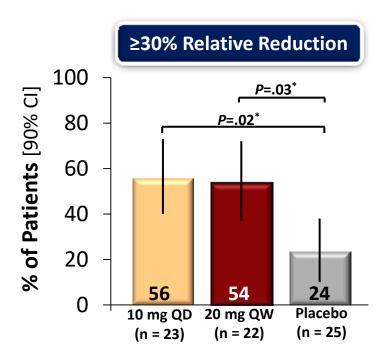

	BMS-98		
Parameters	10 mg QD (n=25)	20 mg QW (n=24)	Placebo (n=26)
Liver, mean (SD)			
Hepatic fat fraction (by MRI-PDFF), %	18 (7)	20 (6)	21 (7)
ALT, U/L	66 (37)	70 (33)	80 (51)
AST, U/L	48 (23)	51 (22)	58 (49)
Pro-C3, ng/mL	19 (15)	22 (15)	19 (13)
Metabolic, mean (SD)			
Triglycerides, mg/dL	207 (110)	186 (55)	171 (75)
LDL cholesterol, mg/dL	129 (38)	120 (36)	128 (55)
HDL cholesterol, mg/dL	47 (10)	45 (12)	50 (11)
HbA _{1c} , %	6.1 (0.9)	6.2 (1.1)	6.0 (0.9)

Liver and metabolic parameters were comparable between treatment groups

ALT, alanine aminotransferase; AST, aspartate aminotransferase; HbA_{1c}, glycated hemoglobin; HDL, high density lipoprotein;

LDL, low density lipoprotein; MRI-PDFF, magnetic resonance imaging-proton density fat-fraction; QD, once daily; QW, once weekly; SD, standard deviation.

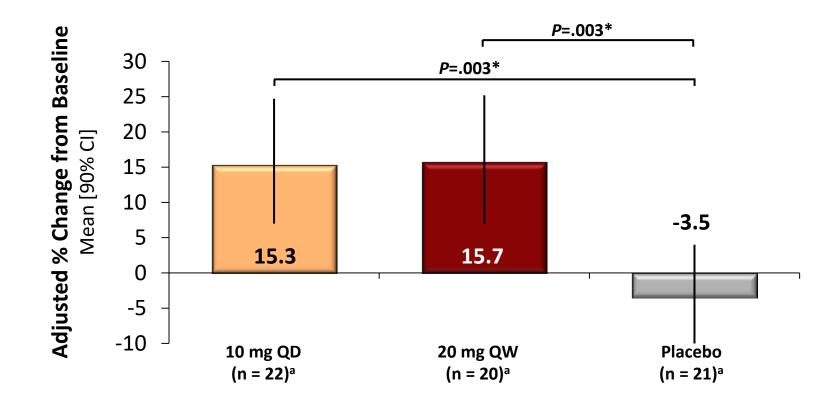
Absolute Improvement in Hepatic Fat Fraction (MRI-PDFF) at Week 16


BMS-986036 QD and QW treatment compared with placebo significantly reduced hepatic fat fraction

*Inferential statistical analyses were conducted using a MMRM and not adjusted for multiple comparisons.

CI, confidence interval; MRI-PDFF, magnetic resonance imaging-proton density fat-fraction; MMRM, mixed effects model for repeated measures; QD, once daily; QW, once weekly.

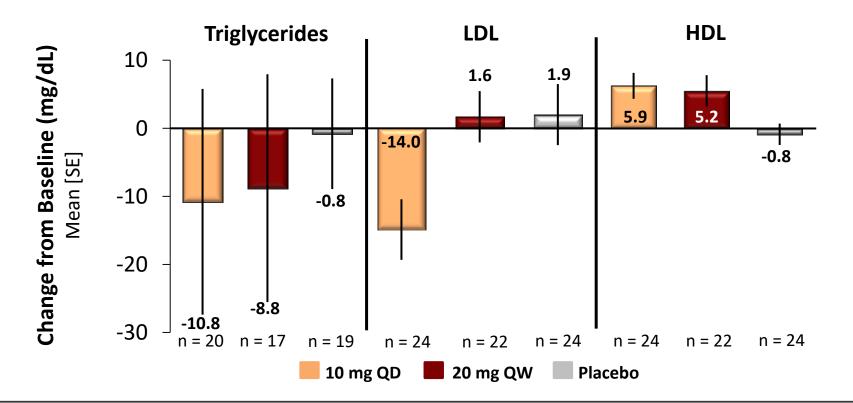
9


Improvement in Hepatic Fat Fraction (MRI-PDFF) at Week 16

- Relative reduction of ≥29% in MRI-PDFF is associated with histologic response in NASH patients¹
- Significantly more BMS-986036 QD patients compared with placebo patients had ≥30% reduction in MRI-PDFF
 - More QW patients versus placebo patients had ≥30% reduction in MRI-PDFF

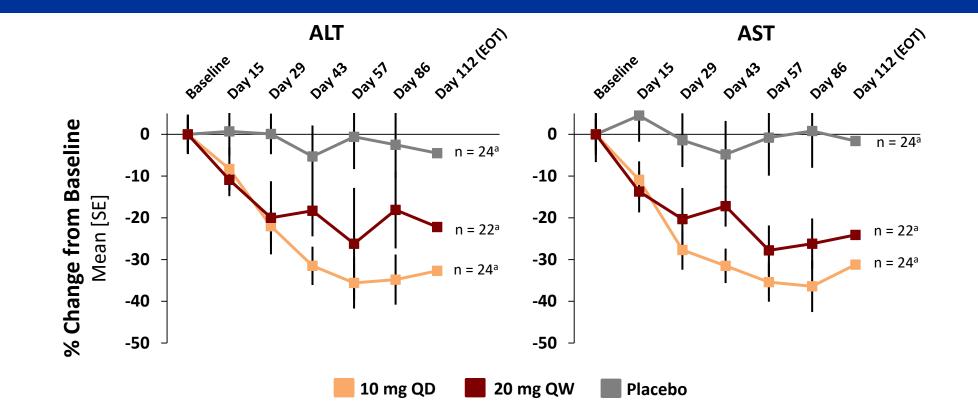
*Inferential statistical analyses were conducted post hoc using Fisher's Exact test and not adjusted for multiple comparisons. CI, confidence interval; MRI-PDFF, magnetic resonance imaging - proton density fat-fraction; 1. Patel J, et al. *Therap Adv Gastroenterol* 2016;**9**:692-701.

Improvement in Adiponectin at Week 16

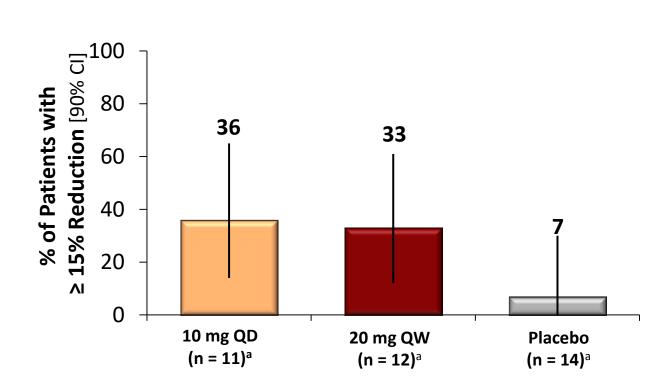

- Previous studies have suggested that higher adiponectin levels are associated with reductions in steatosis, inflammation, and fibrosis¹
- BMS-986036 QD and QW compared with placebo significantly increased adiponectin levels

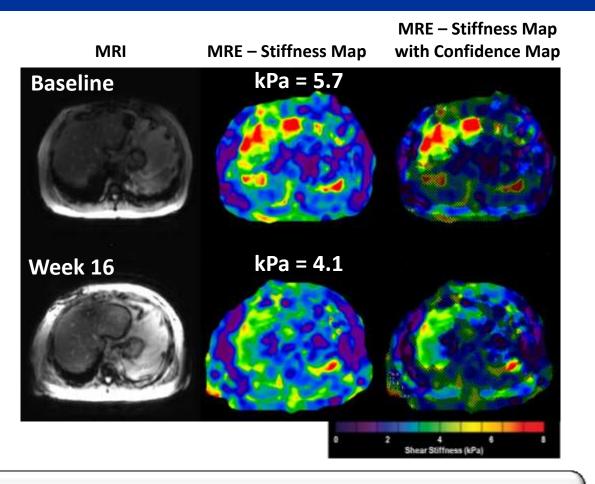
*Inferential statistical analyses were conducted post hoc using a MMRM and not adjusted for multiple comparisons ^aSample size for adiponectin was smaller than MRI-PDFF due to some non-evaluable samples at baseline. 1. Polyzos SA, et al. *Diabetes Obes Metab* 2010;12(5):365-83.

Cl, confidence interval; MMRM, mixed effects model repeated measures; QD, once daily; QW, once weekly.


11

Improvement in Triglycerides, LDL, and HDL Cholesterol at Week 16


- Fasting triglycerides were highly variable across treatment groups
- BMS-986036 QD and QW groups showed improved HDL levels from baseline
- BMS-986036 10 mg QD reduced LDL levels relative to baseline
- No meaningful changes in triglycerides, LDL or HDL levels were observed with placebo


Improvements in ALT and AST Over Time

- BMS-986036 QD and QW treatment were associated with improvements from baseline in biomarkers of liver injury
- Changes from baseline were minimal in the placebo group

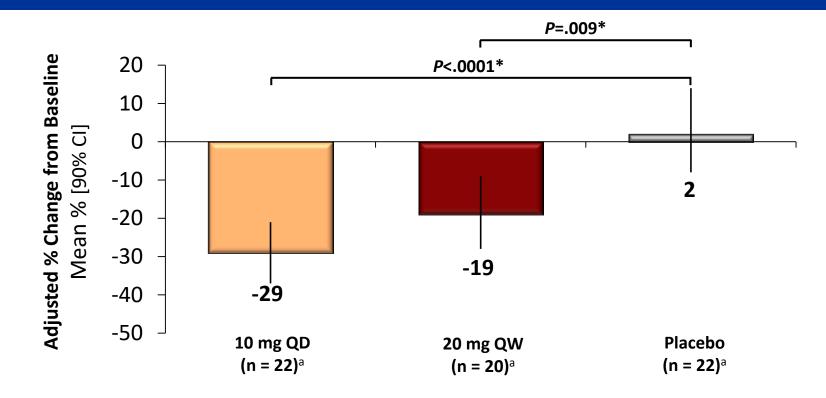
Improvement in Liver Stiffness (MRE) at Week 16

BMS-986036 QD and QW groups relative to placebo had a numerically greater percentage of patients with ≥15% reduction in liver stiffness^a

^aSample size for the liver stiffness (MRE) analysis was smaller than other endpoints because MRE was only conducted at a subset of imaging facilities with the appropriate hardware and software.

Safety Summary

	BMS-986036			
Event, n (%)	10 mg QD (n=25)	20 mg QW (n=24)	Placebo (n=26)	
Deaths	0	0	0	
Discontinuation due to AEs	0	0	0	
Serious AEs ^a	1 (4)	1 (4) ^b	1 (4)	
Treatment-related SAEs	0	0	0	
Overall AEs	18 (72)	13 (54)	15 (58)	
AEs in > 10% of participants				
Diarrhea	3 (13)	5 (22)	2 (8)	
Nausea	4 (16)	3 (13)	2 (8)	
Fatigue	1 (4)	0	3 (11)	
Headache	1 (4)	2 (8)	1 (4)	
Urinary tract infection	1 (4)	3 (12)	2 (8)	
Frequent bowel movements	5 (20)	0	0	
Grade 3 laboratory abnormalities ^c	1 (4)	2 (8)	2 (8)	


• BMS-986036 was generally well tolerated; most AEs were mild, none were considered severe

• There were no grade 4 laboratory abnormalities

^a2 SAEs occurred during the screening period so no treatment group was assigned and those patients do not appear on this table; ^bThis patient was given a small amount of BMS-986036 20 mg on Day 1 incorrectly. This patient was randomized twice in error and should have received placebo; ^c4 events of increased ALT, 1 event of high glucose (20 mg QW).

AE, adverse event; ALT, alanine aminotransferase; QD; daily dosing; QW, once weekly; SAE, serious adverse event.

Reduction in Serum Pro-C3 at Week 16

- Elevated serum Pro-C3 levels are associated with fibrosis, progression of fibrosis, and may identify patients who are likely to benefit from anti-fibrotic therapy¹⁻³
- All patients had comparable serum Pro-C3 levels at baseline
- BMS-986036 QD and QW compared with placebo significantly reduced serum Pro-C3 levels

^{*}Inferential statistical analyses were conducted post hoc using a longitudinal repeated measurements model analysis. ^aSample size for serum Pro-C3 was smaller than MRI-PDFF due to some non-evaluable samples at baseline.

^{1.} Nielsen MJ, et al. *PLOS One* 2015;**10**(9):e0137302; 2. Nielsen MJ, et al. *Liver Int* 2015;**35**:429-437;

^{3.} Karsdal MA, et al. Am J Physiol Gastrointest Liver Physiol 2016;311(6):G1009-1017.

Summary and Conclusions

- BMS-986036 10 mg QD and 20 mg QW for 16 weeks, compared with placebo, significantly decreased hepatic fat fraction in patients with NASH (F1–F3)
- BMS-986036 QD and QW relative to placebo was associated with improvements in biomarkers of fibrosis (MRE and Pro-C3), metabolic parameters (adiponectin and lipids), and markers of hepatic injury (ALT and AST)
- BMS-986036 QD and QW were generally well tolerated with no deaths, SAEs related to treatment, or discontinuations due to AEs
- These results suggest that BMS-986036 has beneficial effects on steatosis, liver injury, and fibrosis in NASH
- Future clinical studies of weekly administration of BMS-986036 for NASH are warranted

BMS-986036 Posters at AASLD

Number/Title	Session	Date	Presentation Time	Room
612: Multi-Biomarker Validation of MRI-PDFF- and MRE- Derived Treatment Response with BMS-986036 (PEG- FGF21): A Secondary Analysis of a Multi-Center Clinical Trial in Non-Alcoholic Steatohepatitis (NASH)	Imaging and Noninvasive Fibrosis Assessment	October 20	12:00 – 1:30 pm	Washington Convention Center, Hall D
2112 : Baseline Serum Pro-C3 Predicts Response to BMS- 986036 (PEG-FGF21): A Secondary Analysis of a Multi- Center Clinical Trial in Non-Alcoholic Steatohepatitis (NASH)	Steatosis and Steatohepatitis	October 23	12:30 – 2:00 pm	Washington Convention Center, Hall D

Acknowledgments

- The authors would like to thank the patients and their families for their support and dedication
- The authors would also like to thank the investigators and research staff at all study sites
- Medical writing support was provided by Amanda Martin, PhD, of Medical Expressions (Chicago, IL), and funded by Bristol-Myers Squibb
- ClinicalTrials.gov, registration number study NCT02413372 (MB130045)