

Lipotoxicity as a Trigger for Liver Damage

Harmeet Malhi, M.B.B.S.

NASH-TAG 2018 Conference, The Chateaux Deer Valley January 5, 2018

©2017 MFMER | slide-1

Lipotoxicity in NASH Pathogenesis

Hepatocyte Lipotoxicity

Innate Immune Activation

Recruited Myeloid Cells

- Organelle Stress
 - ER Stress
- Sub-lethal Injury
- Lethal Injury

Lipids Implicated in Toxicity in NASH

MAYO CLINIC

Marra and Svegliati-Baroni. https://doi.org/10.1016/j.jhep.2017.11.014 ©2017 MFMER | slide-3

Saturated Free Fatty Acids Induce Hepatocyte Stress

Saturated FFAs Induce Hepatocyte Lipoapoptosis

Malhi et al. J Biol Chem. 2006;281:12093 ©2017 MFME

Hepatocyte Lipoapoptosis is JNK-dependent

MAYO CLINIC

Malhi et al. J Biol Chem. 2006;281:12093

FFA-induced JNK Activation

Ibrahim et al. J Hepatol. 2011;54:765. Sharma et al. J Hepatol. 2012;56:192. ©2017 MFMER | slide-7

JNK Activates both the Extrinsic and Intrinsic Pathways of Apoptosis

PUMA Expression is Increased by PA

MAYO CLINIC Cazanave et al. J. Biol. Chem. 2009;284:26591

Hepatic PUMA Expression is Increased in Human NASH

Cazanave et al. J. Biol. Chem. 2009;284:26591

©2011 MFMER | ©2017 MFMER | slide-10 ©2017 MFMER | slide-10

PA-leads to a Reduction in McI-1 levels and McI-1 Modulates PA-induced Lipoapoptosis

MAYO CLINIC

ቻና

PA Activates TRAIL receptor (DR5)-mediated Apoptosis

Palmitoleate Inhibits PA-induced Lipoapoptosis

MAYO CLINIC

Toxicity of PA Derivatives

Lysophosphatidylcholine (LPC) Induces Caspase-dependent Apoptosis

Palmitate-induced Hepatocyte Apoptosis

Malhi and Gores. 2008. Seminars in Liver Disease 2017 MEMER | slide-16

Hepatic Dysfunction Caused by Consumption of a High Fat Diet

Cell Reports 2017 21, 3317-3328DOI: (10.1016/j.celrep.2017.11.059)

©2017 MFMER | slide-17

Hepatocellular Injury and Hepatocyte Apoptosis **Mediate HFD-Induced Liver Phenotype**

Importantly, it also revealed poorly characterized aspects of the condition, including hepatocellular injury, cell-cell interactions, extracellular matrix (ECM) organization, and apoptosis.

Cell Reports 2017 21, 3317-3328DOI: (10.1016/j.celrep.2017.11.059) ©2017 MFMER | slide-18

DR5 (TRAIL receptor) Deletion Suppresses the Inflammation of Nutrient Excess

MAYO TLINIC

MFMER | slide-19

Saturated Free Fatty Acids Induce Hepatocyte Stress

©2017 MFMER | slide-20

A. Cell death as an initiator of inflammation: cell death-induced inflammation

B. Cell death as a biomarker for stressed cells: stress-induced inflammation

Stressed Hepatocyte

Apoptotic Hepatocyte Inflammatory Cell

Extracellular Vesicles in Liver Diseases

Cover of *Hepatology*. December 2016.

Circulating EVs are Increased in a Dietary Murine Model of NASH

Chow Fed 24 weeks

MAYO CLINIC

FFC Diet Fed 24 weeks

Circulating EVs are Increased in Human NASH

MAYO CLINIC

PA-treated Hepatocytes Release EV

PA-Induced EV Release is IRE1α-dependent

Ceramides are Enriched in PA-stimulated EVs

EV Release and Cargo During Lipotoxicity

MAYO CLINIC

ᠿᡗ

©2017 MFMER | slide-28

PA-induced EVs are Chemo-attractive to Macrophages via S1P Signaling

S1P Receptor Inhibitors BMDM

Palmitate Activates Inflammatory Signaling

Wen et al. *Nature Immunology* **12**, 408–415 (2011) Marta Riera-Borrull et al. J Immunol 2017;199:3858-3869 Idrissova et al. J Hepatology 20

©2017 MFMER | slide-30

Other Cell Types Targeted by Toxic Lipids

Palmitate is toxic to isolated hepatic stellate cells

• Palmitate is toxic to isolated cholangiocytes

• ... ? in vivo relevance

What are the Modifiers of Lipotoxicity?

 Small subset of subjects with lipid overload that develop lipotoxicity

Genetic Modifiers of Lipotoxicity

Microbiome and Lipotoxicity

MAYO CLINIC

Int. J. Mol. Sci. 2016, 17(4), 481 @2017 MFMER | slide-34

Gut-Liver Axis

Individual Differences in Lipid Species

- Short-lived reactive lipid species
- Other signaling lipids, such as resolvins

Rius et al. FASEB J. 2014 Feb;28(2):836-48

FFA-induced Sublethal and Lethal Hepatocyte Injury Mediate NASH Pathogenesis

MAYO CLINIC

Thank You

malhi.harmeet@mayo.edu